首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-Frame Correspondence Estimation Using Subspace Constraints
Authors:Irani  Michal
Affiliation:(1) Department of Computer Science and Applied Math, The Weizmann Institute of Science, 76100 Rehovot, Israel
Abstract:When a rigid scene is imaged by a moving camera, the set of all displacements of all points across multiple frames often resides in a low-dimensional linear subspace. Linear subspace constraints have been used successfully in the past for recovering 3D structure and 3D motion information from multiple frames (e.g., by using the factorization method of Tomasi and Kanade (1992, International Journal of Computer Vision, 9:137–154)). These methods assume that the 2D correspondences have been precomputed. However, correspondence estimation is a fundamental problem in motion analysis. In this paper we show how the multi-frame subspace constraints can be used for constraining the 2D correspondence estimation process itself.We show that the multi-frame subspace constraints are valid not only for affine cameras, but also for a variety of imaging models, scene models, and motion models. The multi-frame subspace constraints are first translated from constraints on correspondences to constraints directly on image measurements (e.g., image brightness quantities). These brightness-based subspace constraints are then used for estimating the correspondences, by requiring that all corresponding points across all video frames reside in the appropriate low-dimensional linear subspace.The multi-frame subspace constraints are geometrically meaningful, and are {not} violated at depth discontinuities, nor when the camera-motion changes abruptly. These constraints can therefore replace {heuristic} constraints commonly used in optical-flow estimation, such as spatial or temporal smoothness.
Keywords:correspondence estimation  optical-flow  direct (gradient-based) methods  subspace constraints  factorization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号