首页 | 本学科首页   官方微博 | 高级检索  
     


The geometrical effect of single walled carbon nanotube network transistors on low frequency noise characteristics
Authors:Kim Un Jeong  Kil Joon Pyo  Park Wanjun
Affiliation:Frontier Research Laboratory, Samsung Advanced Institute of Technology, 449-901, Yongin, Korea.
Abstract:The noise characteristics of randomly networked single walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition with field effect transistor. Geometrical complexity due to the large number of tube-tube junctions in the nanotube network is expected to be one of the key factors for the noise power of 1/f dependence. We investigated low frequency noise as a function of channel length (2-10 microm) and found that increased with longer channel length. Percolational behaviors of nanotube network that differs from ordinary semiconducting and metallic materials can be characterized by a geometrical picture with electrical homo- and hetero-junctions. Fixed nanotube density provides a test conditions to evaluate the contributions of junctions as a noise center. Hooge's empirical law is applied to investigate the low frequency noise characteristics of single walled carbon nanotube random network transistors. The noise power shows the dependence of the transistor channel length. It is understood that nanotube/nanotube junctions act as a noise center. However, the differences induced by channel length in the noise power are observed as not so significant. We conclude that tolerance of low frequency noise is important property for SWNT networks as an electronic device application.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号