首页 | 本学科首页   官方微博 | 高级检索  
     

求解旅行商问题的自学习粒子群优化算法
引用本文:蔡荣英,李丽珊,林晓宇,钟一文. 求解旅行商问题的自学习粒子群优化算法[J]. 计算机工程与设计, 2007, 28(2): 261-263,266
作者姓名:蔡荣英  李丽珊  林晓宇  钟一文
作者单位:福建农林大学,计算机与信息学院,福建,福州,350002;福建农林大学,计算机与信息学院,福建,福州,350002;福建农林大学,计算机与信息学院,福建,福州,350002;福建农林大学,计算机与信息学院,福建,福州,350002
基金项目:福建省自然科学基金 , 福建省青年科技人才创新基金
摘    要:针对旅行商问题,提出了一种带自学习算子的粒子群优化算法,根据旅行商问题及离散量运算的特点,对粒子的位置、速度等量及其运算规则进行了重新定义,为抑制早熟停滞现象,定义了变异速度来保持粒子群的多样性,使用自学习算子来提高算法的局部求精能力,使算法在空间探索和局部求精间取得了较好的平衡,与领域中的其它典型算法进行了仿真比较,结果表明,该算法具有良好的性能.

关 键 词:粒子群优化  旅行商问题  自学习算子  变异速度  组合优化
文章编号:1000-7024(2007)02-0261-03
修稿时间:2006-01-05

Self-learning particle swarm optimization algorithm for traveling salesman problem
CAI Rong-ying,LI Li-shan,LIN Xiao-yu,ZHONG Yi-wen. Self-learning particle swarm optimization algorithm for traveling salesman problem[J]. Computer Engineering and Design, 2007, 28(2): 261-263,266
Authors:CAI Rong-ying  LI Li-shan  LIN Xiao-yu  ZHONG Yi-wen
Affiliation:College of Computer and Information, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Abstract:A particle swarm optimization algorithm with self-learning operator is designed to tackle the traveling salesman problem.Based on the characteristics of the traveling salesman problem and the operations of discrete variables,particle's position,velocity and their operation rules are redefined.In order to restrain premature stagnation,a mutation velocity is designed to keep the diversity of particle swarm,and a self-learning operator is defined to improve the algorithm's intensification ability.Using those operators,the pro-posed algorithm can get good balance between exploration and exploitation.The simulation results comparing with typical algorithms from the literature show that it can produce good results.
Keywords:particle swarm optimization  traveling salesman problem  self-learning operator  mutation velocity  combinatorial optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号