Center for Research in Intelligent Systems, College of Engineering, University of California, Riverside, CA 92521, USA
Abstract:
Recognition of occluded objects in synthetic aperture radar (SAR) images is a significant problem for automatic target recognition. Stochastic models provide some attractive features for pattern matching and recognition under partial occlusion and noise. In this paper, we present a hidden Markov modeling based approach for recognizing objects in SAR images. We identify the peculiar characteristics of SAR sensors and using these characteristics we develop feature based multiple models for a given SAR image of an object. The models exploiting the relative geometry of feature locations or the amplitude of SAR radar return are based on sequentialization of scattering centers extracted from SAR images. In order to improve performance we integrate these models synergistically using their probabilistic estimates for recognition of a particular target at a specific azimuth. Experimental results are presented using both synthetic and real SAR images.