首页 | 本学科首页   官方微博 | 高级检索  
     

数据库系统性能模型建模方法综述
引用本文:张锦文,牛保宁. 数据库系统性能模型建模方法综述[J]. 计算机应用研究, 2019, 36(3)
作者姓名:张锦文  牛保宁
作者单位:太原理工大学计算机科学与技术学院,太原,030024;太原理工大学计算机科学与技术学院,太原,030024
基金项目:国家自然科学基金资助项目(61572345)
摘    要:数据库系统性能模型是数据库系统管理的重要基础技术支撑,广泛用于查询调度、资源分配、性能调优等任务中。当前的性能模型主要分为分析型和统计型两种,分析型模型需要深入研究数据库系统查询执行过程,对动态查询的适应性较好,无须成本高昂的采样实验,但在查询并行执行情景下建模复杂,对不同的数据库系统有不同的理论模型。统计型模型无须分析查询执行过程,通过采集查询执行参数并训练某个数学模型。统计型建模过程简单,能够较好地描述查询交互,预测效果较好,但采样成本很高,对动态查询的适应性差。对数据库系统性能建模的主要文献进行综述,重点介绍数据库系统性能建模的主要方法,并讨论这两类模型各自的优缺点、建模的难点以及应对策略。在此基础上,对数据库系统性能模型领域的研究做了展望,为有关该领域的研究提供参考。

关 键 词:数据库系统性能模型  数据库系统性能管理  查询交互  查询调度  机器学习
收稿时间:2018-01-08
修稿时间:2019-01-28

Survey on performance modeling of database systems
Zhang Jinwen and Niu Baoning. Survey on performance modeling of database systems[J]. Application Research of Computers, 2019, 36(3)
Authors:Zhang Jinwen and Niu Baoning
Affiliation:Taiyuan University of Technology,
Abstract:Performance modeling of database systems plays an important role in managing database systems, which can be used for query scheduling, resource allocation, performance tuning, etc. The current performance models can be divided into two categories, analytic models and statistical models. The analytical models are built by studying the processes of query execution for the specific database system. It can adapt to dynamical queries well and does not need to do costly sampling experiments. It is complex, however, to describe the execution processes of concurrent queries, and has to develop different theoretical models for different database systems. In contrast, statistical models predict the performance of database systems by training a mathematical model with data collected from the database systems, avoiding the complexity of studying the detailed query execution processes and has better prediction accuracy. For the reason of sampling, statistical modeling is costly and cannot adapt to dynamic queries. This paper survives the literatures of performance modeling of database systems, puts emphasis on the major modeling methods, discusses the pros and cons of the two types of models, and the challenging and corresponding approaches for attacking them. Finally, the future research directions in the field of database performance modeling are discussed.
Keywords:database system performance model  database system performance management  query interaction  query schedule  machine learning
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号