首页 | 本学科首页   官方微博 | 高级检索  
     

基于资源分配网络的小数据集并行集成学习方法
引用本文:张安国,张树勋,朱巍,李秀敏,黄金龙. 基于资源分配网络的小数据集并行集成学习方法[J]. 计算机应用研究, 2019, 36(4)
作者姓名:张安国  张树勋  朱巍  李秀敏  黄金龙
作者单位:锐捷网络股份有限公司,中国科学院大学,锐捷网络股份有限公司,重庆大学,长江师范学院
基金项目:重庆市自然科学基金资助项目(cstc2016jcyjA0015);重庆市涪陵区科技计划项目(FLKJ2015ABB1099)
摘    要:机器学习领域中,如何在小规模的训练数据集上获得一个具有稳定的高计算精度的算法模型,一直以来都是一个棘手而富有挑战的问题。从算法模型出发,提出了一种基于扩展卡尔曼滤波器的资源分配网络并行集成学习方法。该集成系统由多个带有扩展卡尔曼滤波器的资源分配网络(RANEKF)组成,并且每个RANEKF子网的输入由原始数据集中的输入经过随机权值的修正得到。通过和其他神经网络构成的集成学习算法的实验对比,发现提出的方法在小训练集上拥有更高的计算精度和稳定性。

关 键 词:资源分配网络  并行集成学习  增量学习  扩展卡尔曼滤波器
收稿时间:2017-10-26
修稿时间:2019-02-25

Parallel ensemble learning method based on resource allocating networks for small dataset
Zhang Anguo,Zhang Shuxun,Zhu Wei,Li Xiumin and Huang Jinlong. Parallel ensemble learning method based on resource allocating networks for small dataset[J]. Application Research of Computers, 2019, 36(4)
Authors:Zhang Anguo  Zhang Shuxun  Zhu Wei  Li Xiumin  Huang Jinlong
Affiliation:Ruijie Networks Co.,Ltd.,,,,
Abstract:To design a training model with stable computational performance and high accuracy which is applied on a small training dataset has been a difficult and challenging problem in the field of machine learning. This paper proposed a Resource Allocating Networks with Extended Kalman Filter (RANEKFs) based parallel ensemble learning algorithm. The learning system is composed of multiple RANEKF units, and the unit inputs are produced by the original dataset with random initialized weights. Based on the experiment results conducted on a small dataset, it is found that the novel model outperforms the ensemble learning systems constructed by the other artificial neural networks in terms of the computational accuracy and stability.
Keywords:resource allocating network  parallel ensemble learning  incremental learning  extended Kalman filter
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号