首页 | 本学科首页   官方微博 | 高级检索  
     

基于时序性面部动作信息的驾驶员状态检测框架
引用本文:崔子岩,汪剑鸣,金光浩. 基于时序性面部动作信息的驾驶员状态检测框架[J]. 计算机应用研究, 2019, 36(11)
作者姓名:崔子岩  汪剑鸣  金光浩
作者单位:天津工业大学计算机科学与软件学院,天津,300380;天津工业大学计算机科学与软件学院,天津300380;天津工业大学电子与信息工程学院,天津300380
基金项目:国家自然科学基金资助项目(61302127,61403278);中国博士后科学基金资助项目(2015M570228);天津市应用基础与前沿技术研究计划资助项目(15JCYBJC16600);天津市自然科学基金资助项目(16JCYBJC42300);天津市高等学校创新团队培养计划资助项目(TD13-5032)
摘    要:通过网络摄像头获取驾驶员面部视频输入网络进行检测的方法主要通过分析驾驶员口型等面部表情来判断是否疲劳驾驶,但说话等很多类似的状态也被误检为疲劳。针对以上问题提出了一种基于时序性面部动作信息的检测框架,对驾驶员状态进行检测,从而提高检测准确率、降低误检率。该框架通过检测视频中的脸部轮廓,提取脸部的多种特征,形成面部动作单元;通过训练对应的LSTM网络,形成时序性的面部动作单元,根据其相关性进行多种动作单元融合,检测最终驾驶员的状态。在公共YawDD数据集上的检测结果表明,相比于现有的方法,该检测方法的准确率提高到了93.1%,同时大幅降低了疲劳状态的误检率。

关 键 词:异常驾驶  时序性信息  面部检测  长短期记忆网络
收稿时间:2018-05-14
修稿时间:2019-10-06

Driver state detection framework based on temporal facial action information
Cui Ziyan,Wang Jianming and Jin Guanghao. Driver state detection framework based on temporal facial action information[J]. Application Research of Computers, 2019, 36(11)
Authors:Cui Ziyan  Wang Jianming  Jin Guanghao
Affiliation:School of Computer Science and Software,Tianjin Polytechnic University,,
Abstract:It is an effective means to detect abnormal driving such as fatigue by detecting the driver''s face video input network through a webcam. The previous method mainly analyzed the facial expressions such as the driver''s mouth shape to analyze whether or not to yawn, thereby judging whether or not fatigue driving, but many similar states such as speaking were also mistakenly detected as fatigue. Aiming at the above problems, this paper proposed a detection framework based on sequential facial motion information to detect the driver''s state, thus improving the detection accuracy and reducing the false detection rate. The framework extracted various features of the face to form a facial action unit by detecting the contour of the face in the video. It formed a sequential facial action by training the corresponding LSTM network. The unit performed a plurality of action unit fusions according to its correlation to detect the state of the final driver. The test results on the public YawDD data set show that the accuracy rate of the proposed ftamework is increased to 93.1% compared with the existing method, and the false detection rate of the fatigue state is greatly reduced.
Keywords:abnormal driving   temporal information   facial action detection   LSTM network
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号