首页 | 本学科首页   官方微博 | 高级检索  
     

基于P-Ifourier观测矩阵的宽带压缩感知方法
引用本文:刘洋,任清华,孟庆微,苏玉泽. 基于P-Ifourier观测矩阵的宽带压缩感知方法[J]. 计算机应用研究, 2019, 36(4)
作者姓名:刘洋  任清华  孟庆微  苏玉泽
作者单位:空军工程大学信息与导航学院,空军工程大学信息与导航学院,空军工程大学信息与导航学院,空军工程大学信息与导航学院
基金项目:中国电子科技集团公司航天信息应用技术重点实验室新技术研究高校合作项目(KX162600022);国家自然科学基金资助项目(61401499)
摘    要:针对压缩感知理论在宽带频谱感知领域应用时重构精度差的问题,根据平稳信号在频域所表现出的稀疏特性,提出了一种基于P-Ifourier(Partial-Inverse fourier)观测矩阵的宽带压缩频谱感知方法。新方法首先将频谱感知问题建模为一个典型的压缩感知问题,利用相关性能优良的标准正交傅里叶基构造观测矩阵,使观测矩阵具有良好的重构性能和重构精度。仿真结果表明,相比于高斯随机观测矩阵和嵌入式混沌序列-循环Toeplitz结构观测矩阵,该方法在较低信噪比环境下能够明显降低信号重构的均方误差,并且在相同条件下的重构概率得到了明显改善。

关 键 词:宽带频谱感知  压缩感知  观测矩阵  傅里叶基
收稿时间:2017-10-23
修稿时间:2019-03-04

Broadband compressed sensing method based on P-Ifourier observation matrix
Liu Yang,Ren Qinghu,Meng Qingwei and Su Yuze. Broadband compressed sensing method based on P-Ifourier observation matrix[J]. Application Research of Computers, 2019, 36(4)
Authors:Liu Yang  Ren Qinghu  Meng Qingwei  Su Yuze
Abstract:Aiming at the problem of poor precision in the application of compressed sensing theory in the field of broadband spectrum sensing, and according to the sparse characteristics of the stationary signal in the frequency domain, this paper developed a broadband compression spectrum sensing method based on P-Ifourier (Partial-Inverse fourier) observation matrix. The new method translated the spectrum sensing problem into a typical compressed sensing problem, and used the standard orthogonal Fourier basis observation matrix which has the excellent incoherence performance to build the observation matrix in order to have good reconstruction performance and reconstruction precision. The simulation results show that compared with the Gaussian random observation matrix and the embedded chaotic sequence - cyclic Toeplitz structure observation matrix, this method can significantly reduce the mean square error of signal reconstruction in the lower SNR environment, and under the same conditions it can significantly improves the probability of reconstruction.
Keywords:broadband spectrum sensing  compressed sensing  observation matrix  fourier base
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号