首页 | 本学科首页   官方微博 | 高级检索  
     


Isolation and characterization of mouse nasal-associated lymphoid tissue
Authors:H Asanuma  AH Thompson  T Iwasaki  Y Sato  Y Inaba  C Aizawa  T Kurata  S Tamura
Affiliation:Glaxo Wellcome Research and Development, Stevenage, Hertfordshire, UK.
Abstract:SETTING: Mycobacterial galactofuran is essential to the linking of the peptidoglycan and mycolic acid cell wall layers. Galactofuran biosynthesis should thus be essential for viability. OBJECTIVE: The objective was to determine the pathway of galactofuranosyl biosynthesis and to clone a gene encoding an essential enzyme necessary for its formation. DESIGN: Specific enzymatic conversions involved in formation of galactopyranose and galactofuranose residues in other bacteria were tested for in Mycobacterium smegmatis. M. tuberculosis deoxyribonucleic acid (DNA) was identified by homology. RESULTS: It was shown that the de novo synthesis of the galactose carbon skeleton occurred in M. smegmatis by the transformation of UDP-glucopyranose to UDP-galactopyranose via the enzyme UDP-glucose 4-epimerase (E.C. 5.1.3.2). The N-terminal sequence of this enzyme was obtained after purification. The galactose salvage pathway enzyme, UDP-glucose-galactose-1-phosphate uridylyltransferase (E.C. 2.7.7.12), was also shown to be present. The critical biosynthetic transformation of the galactopyranose to galactofuranose ring form was shown to occur at the sugar nucleotide level via the enzyme UDP-galactopyranose mutase (E.C. 5.4.99.9). The M. tuberculosis DNA encoding this enzyme was sequenced, the gene expressed in Escherichia coli, and the expected enzymatic activity demonstrated. CONCLUSION: Galactofuranose biosynthesis can now be pursued as a potential drug target in M. tuberculosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号