首页 | 本学科首页   官方微博 | 高级检索  
     


Corrosion behavior of carbon steel rock bolt in simulated Yucca Mountain ground waters
Authors:A. Yilmaz  R. B. Rebak  D. Chandra
Affiliation:(1) the Lawrence Livermore National Laboratory, 94550 Liermore, CA;(2) the Metallurgical and Materials Science and Engineering Department, University of Nevada-Reno, 89557 Reno, NV
Abstract:Medium carbon steel (AISI 1040) was one of the candidate materials for rock bolts to reinforce the borehole liners and emplacement drifts of the high-level nuclear waste repository in Yucca Mountain. The corrosion performance of this structural steel was investigated by techniques such as linear polarization, electrochemical impedance spectroscopy (EIS), and laboratory immersion tests in simulated ground waters. The corrosion rates of the steel were measured for the temperatures in the range from 25 °C to 85 °C, for the ionic concentrations of 1 time (1×), 10 times (10×), and a hundred times (100×) ground water concentration. The steel corroded uniformly at penetration rates of 35 to 200 μm/year in the deaerated waters, and at 200 to 1000 μm/year in the aerated waters. Increasing temperatures in the deaerated waters increased the corrosion rate of the steel. However, increasing ionic concentrations influenced the corrosion rate only slightly. In the aerated 1×and 10×waters, increasing temperatures increased the rates of the steel significantly. In the aerated 100×waters, the corrosion rate increased from 25 °C to 45 °C and decreased at higher temperatures (65 °C and up) due to the formation of oxide/hydroxide films and salt scales on the surface of the steel specimen. The steel suffered pitting corrosion in the both deaerated and aerated hot ground water environments after anodic polarization. This article is based on a presentation made in the symposium “Effect of Processing on Materials Properties for Nuclear Waste Disposition,” November 10–11, 2003, at the TMS Fall meeting in Chicago, Illinois, under the joint auspices of the. TMS Corrosion and Environmental Effects and Nuclear Materials Committees.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号