首页 | 本学科首页   官方微博 | 高级检索  
     


Advanced model and analysis of series resistance for CMOS scalinginto nanometer regime. I. Theoretical derivation
Authors:Seong-Dong Kim Cheol-Min Park Woo  JCS
Affiliation:Dept. of Electr. Eng., California Univ., Los Angeles, CA;
Abstract:An advanced series resistance model is developed to accurately predict source/drain (S/D) series resistance of complementary metal-oxide semiconductor (CMOS) in the nanometer regime. The series resistance is modeled by division into four resistance components named SDE-to-gate overlap, S/D extension, deep S/D, and silicide-diffusion contact resistance, considering the nonnegligible doping-dependent potential relationship in MOS accumulation region due to scaled supply voltage, current behavior related to heavily doped ultra-shallow source/drain extension (SDE) junction, polysilicon gate depletion effects (PDE), lateral and vertical doping gradient effect of SDE junction, silicide-diffusion contact structure, and high-κ dielectric sidewall. The proposed model well characterizes unique features of nanometer-scale CMOS and is useful for analyzing the effect of source/drain parameters on CMOS device scaling and optimization
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号