首页 | 本学科首页   官方微博 | 高级检索  
     


A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing
Affiliation:Institute of Systems Engineering, College of Management and Economics, Tianjin University, Tianjin 300072, China
Abstract:With the accelerating process of urbanization, developing countries are facing growing pressure to pursue energy savings and emission reductions, especially in urban passenger transport. In this paper, we built a Beijing urban passenger transport carbon model, including an economy subsystem, population subsystem, transport subsystem, and energy consumption and CO2 emissions subsystem using System Dynamics. Furthermore, we constructed a variety of policy scenarios based on management experience in Beijing. The analysis showed that priority to the development of public transport (PDPT) could significantly increase the proportion of public transport locally and would be helpful in pursuing energy savings and emission reductions as well. Travel demand management (TDM) had a distinctive effect on energy savings and emission reductions in the short term, while technical progress (TP) was more conducive to realizing emission reduction targets. Administrative rules and regulations management (ARM) had the best overall effect of the individual policies on both energy savings and emission reductions. However, the effect of comprehensive policy (CP) was better than any of the individual policies pursued separately. Furthermore, the optimal implementation sequence of each individual policy in CP was TP→PDPT→TDM→ARM.
Keywords:Urban passenger transport  Energy conservation  Emission reduction  System dynamics  Scenario analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号