首页 | 本学科首页   官方微博 | 高级检索  
     


Dual‐Phase CsPbBr3–CsPb2Br5 Perovskite Thin Films via Vapor Deposition for High‐Performance Rigid and Flexible Photodetectors
Authors:Guoqing Tong  Huan Li  Danting Li  Zhifeng Zhu  Enze Xu  Guopeng Li  Linwei Yu  Jun Xu  Yang Jiang
Affiliation:1. School of Materials Science and Engineering, Hefei University of Technology, Hefei, P. R. China;2. National Laboratory of Solid State Microstructures and School of Electronics Science and Engineering/Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, P. R. China
Abstract:Inorganic perovskites with special semiconducting properties and structures have attracted great attention and are regarded as next generation candidates for optoelectronic devices. Herein, using a physical vapor deposition process with a controlled excess of PbBr2, dual‐phase all‐inorganic perovskite composite CsPbBr3–CsPb2Br5 thin films are prepared as light‐harvesting layers and incorporated in a photodetector (PD). The PD has a high responsivity and detectivity of 0.375 A W?1 and 1011 Jones, respectively, and a fast response time (from 10% to 90% of the maximum photocurrent) of ≈280 µs/640 µs. The device also shows an excellent stability in air for more than 65 d without encapsulation. Tetragonal CsPb2Br5 provides satisfactory passivation to reduce the recombination of the charge carriers, and with its lower free energy, it enhances the stability of the inorganic perovskite devices. Remarkably, the same inorganic perovskite photodetector is also highly flexible and exhibits an exceptional bending performance (>1000 cycles). These results highlight the great potential of dual‐phase inorganic perovskite films in the development of optoelectronic devices, especially for flexible device applications.
Keywords:dual‐phase inorganic perovskites  flexible devices  photo responsivity  physical vapor deposition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号