首页 | 本学科首页   官方微博 | 高级检索  
     


Nanoconfined Nickel@Carbon Core–Shell Cocatalyst Promoting Highly Efficient Visible‐Light Photocatalytic H2 Production
Authors:Ke Zhang  Jingrun Ran  Bicheng Zhu  Huanxin Ju  Jiaguo Yu  Li Song  Shi‐Zhang Qiao
Affiliation:1. National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, China;2. School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia;3. State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China;4. School of Materials Science and Engineering, Tianjin University, Tianjin, China
Abstract:The realization of large‐scale solar hydrogen (H2) production relies on the development of high‐performance and low‐cost photocatalysts driven by sunlight. Recently, cocatalysts have demonstrated immense potential in enhancing the activity and stability of photocatalysts. Hence, the rational design of highly active and inexpensive cocatalysts is of great significance. Here, a facile method is reported to synthesize Ni@C core–shell nanoparticles as a highly active cocatalyst. After merging Ni@C cocatalyst with CdS nanorod (NR), a tremendously enhanced visible‐light photocatalytic H2‐production performance of 76.1 mmol g?1 h?1 is achieved, accompanied with an outstanding quantum efficiency of 31.2% at 420 nm. The state‐of‐art characterizations (e.g., synchrotron‐based X‐ray absorption near edge structure) and theoretical calculations strongly support the presence of pronounced nanoconfinement effect in Ni@C core–shell nanoparticles, which leads to controlled Ni core size, intimate interfacial contact and rapid charge transfer, optimized electronic structure, and protection against chemical corrosion. Hence, the combination of nanoconfined Ni@C with CdS nanorod leads to significantly improved photocatalytic activity and stability. This work not only for the first time demonstrates the great potential of using highly active and inexpensive Ni@C core–shell structure to replace expensive Pt in photocatalysis but also opens new avenues for synthesizing cocatalyst/photocatalyst hybridized systems with excellent performance by introducing nanoconfinement effect.
Keywords:core–  shell cocatalyst  interface engineering  nanoconfinement  photocatalyst
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号