首页 | 本学科首页   官方微博 | 高级检索  
     


A Materiomics Approach to Spider Silk: Protein Molecules to Webs
Authors:Anna?Tarakanova  Email author" target="_blank">Markus?J?BuehlerEmail author
Affiliation:(1) Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA;
Abstract:The exceptional mechanical properties of hierarchical self-assembling silk biopolymers have been extensively studied experimentally and in computational investigations. A series of recent studies has been conducted to examine structure–function relationships across different length scales in silk, ranging from atomistic models of protein constituents to the spider web architecture. Silk is an exemplary natural material because its superior properties stem intrinsically from the synergistic cooperativity of hierarchically organized components, rather than from the superior properties of the building blocks themselves. It is composed of beta-sheet nanocrystals interspersed within less orderly amorphous domains, where the underlying molecular structure is dominated by weak hydrogen bonding. Protein chains are organized into fibrils, which pack together to form threads of a spider web. In this article we survey multiscale studies spanning length scales from angstroms to centimeters, from the amino acid sequence defining silk components to an atomistically derived spider web model, with the aim to bridge varying levels of hierarchy to elucidate the mechanisms by which structure at each composite level contributes to organization and material phenomena at subsequent levels. The work demonstrates that the web is a highly adapted system where both material and hierarchical structure across all length scales is critical for its functional properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号