基于深度代价敏感CNN的年龄估计算法 |
| |
作者姓名: | 李大湘 马宣 任娅琼 刘颖 |
| |
作者单位: | 1. 西安邮电大学 通信与信息工程学院 西安 710121; 2. 西安邮电大学 电子信息现场勘验应用技术公安部重点实验室 西安 710121 |
| |
基金项目: | 国家自然科学基金项目(No.61571361,61102095);陕西省国际合作与交流面上项目(No.2017KW-013,2019JM-604)资助。 |
| |
摘 要: | 针对年龄估计中样本数量不平衡及不同类间发生误分类时付出代价不同的问题,将代价敏感性嵌入深度学习框架中,提出基于深度代价敏感CNN的年龄估计算法.首先为每个年龄类别分别建立损失函数,解决训练样本的不平衡问题.然后,定义代价向量以反映不同类之间发生误分类而付出的代价差异性,构造逆交叉熵误差函数.最后,融合上述方法,为卷积神经网络(CNN)构造一个损失函数,使CNN在训练阶段学习针对年龄估计的鲁棒人脸表征.在不同种族的年龄估计标准图像集上的实验验证文中算法的有效性.
|
关 键 词: | 年龄估计 代价敏感性 卷积神经网路(CNN) 损失函数 |
收稿时间: | 2019-07-22 |
本文献已被 维普 万方数据 等数据库收录! |
| 点击此处可从《模式识别与人工智能》浏览原始摘要信息 |
|
点击此处可从《模式识别与人工智能》下载全文 |
|