首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal 4-D Aircraft Trajectories in a Contrail-sensitive Environment
Authors:Bo Zou  Gurkaran Singh Buxi  Mark Hansen
Affiliation:1.Department of Civil and Materials Engineering,University of Illinois at Chicago,Chicago,USA;2.Department of Civil and Environmental Engineering,University of California at Berkeley,Berkeley,USA
Abstract:Aircraft induced contrails present an important source and a growing concern for climate change in aviation. This paper develops a methodology to determine optimal flight trajectories that minimize the total flying cost in a dynamic, contrail-sensitive environment. The total flying costs consist of costs due to fuel burn, crew, passenger travel time, CO2 emission, and contrail formation. By constructing a multi-layer hexagonal grid structure to represent the airspace, we formulate the single aircraft trajectory optimization problem as a binary integer program that allows for flight altitude and heading adjustment, and contrail information update. Various cost factors are quantified, in particular the one corresponding to aviation-generated contrails, using the Global Warming Potential concept. Computational analyses show that optimal trajectories depend critically upon the time horizon choice for calculating the CO2 climate impact. Shifting flights to periods with low contrail effect is not justified, given the limited benefit but potentially large passenger schedule delay cost increase. The analyses are further extended to determining the optimal trajectories for multiple flights using a successive optimization procedure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号