首页 | 本学科首页   官方微博 | 高级检索  
     


Force-sensing microprobe for precise stimulation ofmechanosensitive tissues
Authors:Kane  BJ Storment  CW Crowder  SW Tanelian  DL Kovacs  GTA
Affiliation:Dept. of Electr. Eng., Stanford Univ., CA;
Abstract:Quantitative study of the transduction mechanisms in mechanically sensitive nerve terminals has been impeded by the lack of instrumentation with which to generate precisely controlled, physically localized mechanical stimuli. The authors have developed high-resolution force sensing mechanical microprobes for use in the characterization of such nerve terminals. This paper describes their design, fabrication, and testing. A microprobe is comprised of a 0.5- to 2-mm long silicon cantilever beam projecting from a larger supporting silicon substrate. Acting as the variable leg of a Wheatstone bridge circuit, a piezoresistive polysilicon element located at the base of the beam is used to measure the stimulation force applied at the tip. The microprobes exhibit a stable, linear relationship between the stimulation force and the resulting output voltage signal. Stimulation forces up to 3 mN have been generated with a measurement resolution of 10 μN. These microprobes have been used as the force sensing element of a closed loop feedback-controlled stimulation system capable of stimulating the mechanoreceptive nerve terminals of the rabbit corneal epithelium
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号