首页 | 本学科首页   官方微博 | 高级检索  
     


Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel
Authors:Liang Hao  Ping Cheng  
Affiliation:aMinistry of Education Key Laboratory of Power Machinery and Engineering, School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
Abstract:Using the multiphase free-energy lattice Boltzmann method (LBM), the formation of a water droplet emerging through a micro-pore on the hydrophobic gas diffusion layer (GDL) surface in a proton exchange membrane fuel cell (PEMFC) and its subsequent movement on the GDL surface under the action of gas shear are simulated. The dynamic behavior of the water droplet emergence, growth, detachment and movement in the gas flow channel is presented. The size of the detached droplet and the time of the droplet removing out of the channel under the influence of gas flow velocity and GDL surface wettability are investigated. The results show that water droplet removal is facilitated by a high gas flow velocity on a more hydrophobic GDL surface. A highly hydrophobic surface is shown to be capable of lifting the water droplet from the GDL surface, resulting in more GDL surface available for gas reactant transport. Furthermore, an analytical model based on force balance is presented to predict the droplet detachment size, and the predicted results are in good agreement with the simulation results. It is shown that the LBM approach is an effective tool to investigate water transport phenomena in the gas flow channel of PEMFCs with surface wettability taken into consideration.
Keywords:Lattice Boltzmann method  Droplet  Dynamic behavior  Gas flow channel  Detachment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号