首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间序列分解的信号挖掘与预测
引用本文:郭锦桥,柳禹名,曹卫东,林云. 基于时间序列分解的信号挖掘与预测[J]. 太赫兹科学与电子信息学报, 2023, 21(6): 751-758
作者姓名:郭锦桥  柳禹名  曹卫东  林云
作者单位:哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
摘    要:随着电磁信号环境日趋复杂以及通信设备数量的不断增加,电磁信号受到干扰问题逐渐加剧。因此,对于信号在不同噪声环境下的接收与处理技术的研究以及在复杂的电磁环境中对信号各项数据指标及其携带信息的利用十分关键。为了解在不同电磁环境下含噪信号的性能表现,提高信号的利用质量及可靠性,本文提出一种基于时间序列分解的电磁数据处理方法。建立了基于加法季节性时间序列分解的含噪信号处理模型,并利用该模型对信号在有噪环境下的表现与规律性、趋势、误码率等性能进行分析与评估,对原始信息、载波信息进行挖掘预测。与传统方法相比,本文提出的基于时间序列分解的信号挖掘与预测模型在高噪环境下对信号预测更为准确。

关 键 词:时间序列分解  特征提取  数据挖掘  数据预测  机器学习
收稿时间:2023-03-16
修稿时间:2023-04-05

Signal mining and prediction based on time series decomposition
GUO Jinqiao,LIU Yuming,CAO Weidong,LIN Yun. Signal mining and prediction based on time series decomposition[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21(6): 751-758
Authors:GUO Jinqiao  LIU Yuming  CAO Weidong  LIN Yun
Abstract:With the increasing complexity of the electromagnetic signal environment and the increasing number of communication devices, the interference with electromagnetic signals is gradually increasing. Therefore, the study on signal reception and processing techniques in different noise environments and the use of signal data indicators and the information they carry in complex electromagnetic environments is very critical. In order to understand the performance of noisy signals in different electromagnetic environments and improve the quality and reliability of signal utilization, a time series decomposition-based electromagnetic data processing method is proposed. A noisy signal processing model is established based on additive seasonal time series decomposition, and the model is also employed to analyze and evaluate the performance of signals in noisy environments with regularity, trend, BER, etc., and to data-mine the original information and carrier information. Compared with the traditional methods, the proposed time series decomposition-based signal mining and prediction model is more accurate for signal prediction in noisy environment.
Keywords:time series decomposition  feature extraction  data mining  data prediction  machine learning
点击此处可从《太赫兹科学与电子信息学报》浏览原始摘要信息
点击此处可从《太赫兹科学与电子信息学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号