首页 | 本学科首页   官方微博 | 高级检索  
     

金属矿深部开采岩爆危险预测的GA-ELM模型研究
引用本文:刘志祥,郑斌,刘进,兰明. 金属矿深部开采岩爆危险预测的GA-ELM模型研究[J]. 矿冶工程, 2019, 39(3): 1-4. DOI: 10.3969/j.issn.0253-6099.2019.03.001
作者姓名:刘志祥  郑斌  刘进  兰明
作者单位:中南大学 资源与安全工程学院,湖南 长沙 410083
基金项目:国家自然科学基金(51674288)
摘    要:为对金属矿山深部开采时岩爆的危险性进行预测,在总结深部开采岩爆发生机理的基础上,综合选取影响岩爆发生的3个重要因素作为岩爆预测的判别因子。搜集国内外金属矿深部开采岩爆的实例作为训练样本,引入极限学习机算法(ELM),针对该算法的不足,采用遗传算法(GA)对其相关参数进行优化,建立了岩爆预测的GA-ELM模型,并与单一ELM模型进行对比。利用该岩爆预测模型对一典型金属矿深部开采进行岩爆预测,结果与实际情况相吻合。研究结果表明,岩爆预测的GA-ELM模型训练效果及泛化能力均优于单一ELM模型、SVM模型及传统的BP模型,且该模型能够对金属矿深部开采的岩爆进行准确有效地预测,具有一定的工程应用价值。

关 键 词:金属矿山  深部开采  岩爆  预测  极限学习机  GA-ELM模型  
收稿时间:2019-01-08

Rockburst Prediction with GA-ELM Model for Deep Mining of Metal Mines
LIU Zhi-xiang,ZHENG Bin,LIU Jin,LAN Ming. Rockburst Prediction with GA-ELM Model for Deep Mining of Metal Mines[J]. Mining and Metallurgical Engineering, 2019, 39(3): 1-4. DOI: 10.3969/j.issn.0253-6099.2019.03.001
Authors:LIU Zhi-xiang  ZHENG Bin  LIU Jin  LAN Ming
Affiliation:School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
Abstract:In order to predict risk grade for rockburst during the deep mining of metal mines, three major factors to influence rockburst were selected as the discrimination factors for rockburst prediction based on the mechanism of rockburst in deep mining. Engineering practices of rockburst in deep mining at home and abroad were collected as training samples. Considering the disadvantage of the extreme learning machine(ELM), genetic algorithms(GA) was used to optimize the related parameters of ELM and a GA-ELM model for rockburst prediction was established, which was also compared to the ELM model. It was found that the prediction with GA-ELM model for the typical deep mining of a metal mine showed the result was consistent with the actual situation. Research indicated that, GA-ELM model was superior to the single ELM model, SVM model and the BP model in terms of training effect and generalization capability. Moreover, GA-ELM model can provide an effective and accurate rockburst prediction for deep mining of metal mines, which can be applied into practical engineering project.
Keywords:metal mine  deep mining  rockburst  prediction  extreme learning machine(ELM)  GA-ELM model  
本文献已被 CNKI 等数据库收录!
点击此处可从《矿冶工程》浏览原始摘要信息
点击此处可从《矿冶工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号