首页 | 本学科首页   官方微博 | 高级检索  
     


Process Optimization and Empirical Modeling for Electrospun Poly(D,L‐lactide) Fibers using Response Surface Methodology
Authors:Shu‐Ying Gu  Jie Ren
Abstract:Summary: Ultrafine fibers were spun from poly(D ,L ‐lactide) (PDLA) solution using a homemade electrospinning set‐up. Fibers with diameter ranging from 350 to 1 900 nm were obtained. Morphologies of fibers and distribution of fiber diameters were investigated varying concentration and applied voltage by scanning electron microscopy (SEM). Average fiber diameter and distribution were determined from about 100 measurements of the random fibers with an image analyzer (SemAfore 5.0, JEOL). A more systematic understanding of process parameters of the electrospinning was obtained and a quantitative relationship between electrospinning parameters and average fiber diameter was established by response surface methodology (RSM). It was concluded that the concentration of polymer solution played an important role in the diameter of fibers and standard deviation of fiber diameter. Lower concentration tended to facilitate the formation of bead‐on‐string structures. Fiber diameter tended to increase with polymer concentration and decrease with applied voltage. Fibers with lower variation in diameter can be obtained at lower concentration regardless of applied voltage. Fibers with uniform diameter and lower variation in diameter can be obtained at higher concentration and higher applied voltage. Process conditions for electrospinning of PDLA could be chosen according to the model in this study.

Contour plots of average fiber diameter as a function of concentration and applied voltage.

Keywords:average fiber diameter  electrospinning  fibers  morphology  poly(D,L‐lactide)  response surface methodology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号