首页 | 本学科首页   官方微博 | 高级检索  
     


The hybrid boundary node method accelerated by fast multipole expansion technique for 3D potential problems
Authors:Jianming Zhang  Masataka Tanaka  Morinobu Endo
Abstract:This paper presents a fast formulation of the hybrid boundary node method (Hybrid BNM) for solving problems governed by Laplace's equation in 3D. The preconditioned GMRES is employed for solving the resulting system of equations. At each iteration step of the GMRES, the matrix–vector multiplication is accelerated by the fast multipole method. Green's kernel function is expanded in terms of spherical harmonic series. An oct‐tree data structure is used to hierarchically subdivide the computational domain into well‐separated cells and to invoke the multipole expansion approximation. Formulations for the local and multipole expansions, and also conversion of multipole to local expansion are given. And a binary tree data structure is applied to accelerate the moving least square approximation on surfaces. All the formulations are implemented in a computer code written in C++. Numerical examples demonstrate the accuracy and efficiency of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.
Keywords:meshless method  hybrid boundary node method  fast multipole method  moving least‐squares approximation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号