首页 | 本学科首页   官方微博 | 高级检索  
     


The Importance of Free Fatty Chain Length on the Lipid Organization in the Long Periodicity Phase
Authors:Charlotte M Beddoes  Denise E Rensen  Gert S Gooris  Marc Malfois  Joke A Bouwstra
Affiliation:1.Division of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, 2311 EZ Leiden, The Netherlands; (C.M.B.); (D.E.R.); (G.S.G.);2.ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain;
Abstract:The skin’s barrier ability is an essential function for terrestrial survival, which is controlled by intercellular lipids within the stratum corneum (SC) layer. In this barrier, free fatty acids (FFAs) are an important lipid class. As seen in inflammatory skin diseases, when the lipid chain length is reduced, a reduction in the barrier’s performance is observed. In this study, we have investigated the contributing effects of various FFA chain lengths on the lamellar phase, lateral packing. The repeat distance of the lamellar phase increased with FFA chain length (C20–C28), while shorter FFAs (C16 to C18) had the opposite behaviour. While the lateral packing was affected, the orthorhombic to hexagonal to fluid phase transitions were not affected by the FFA chain length. Porcine SC lipid composition mimicking model was then used to investigate the proportional effect of shorter FFA C16, up to 50% content of the total FFA mixture. At this level, no difference in the overall lamellar phases and lateral packing was observed, while a significant increase in the water permeability was detected. Our results demonstrate a FFA C16 threshold that must be exceeded before the structure and barrier function of the long periodicity phase (LPP) is affected. These results are important to understand the lipid behaviour in this unique LPP structure as well as for the understanding, treatment, and development of inflammatory skin conditions.
Keywords:skin  stratum corneum  lipids  chain length  X-ray scattering  spectroscopy  permeability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号