首页 | 本学科首页   官方微博 | 高级检索  
     

三角代数上与高阶导子系有关的函数方程的稳定性
引用本文:刘莉君. 三角代数上与高阶导子系有关的函数方程的稳定性[J]. 纺织高校基础科学学报, 2011, 0(4): 510-516
作者姓名:刘莉君
作者单位:陕西理工学院数学系
基金项目:国家自然科学基金资助项目(10571113;10871224);陕西省自然科学研究计划资助项目(2009JM1011)
摘    要:设u=Tri(A,u,B)是三角代数,Jordan导子为三角代数中的一类重要映射.采用算子论的方法结合广义的Jensen等式证明了三角代数上与高阶导子系有关的函数方程具有广义的Hyers-Ulam-Rassias稳定性.从而提供了一种利用稳定性研究扰动问题的方法.

关 键 词:三角代数  导子系  Jordan导子系  Hyers-Ulam-Rassias稳定性

Stability of derivation systems of order n on a triangular algebra
LIU Li-jun. Stability of derivation systems of order n on a triangular algebra[J]. Basic Sciences Journal of Textile Universities, 2011, 0(4): 510-516
Authors:LIU Li-jun
Affiliation:LIU Li-jun(Department of Mathematics,Shaanxi University of Teachnology,Hanzhong,Shaanxi 723000,China)
Abstract:Let U=Tri(A,M,B) be a triangular algebra.In this paper,using operator theoretie method,it was proved the generalized Hyers-Ulam-Rassias stability of functional eduations related to derivations on a triangular algebra associated to a generalized Jensen equation.In addition,it is taked account of the problem of Jacobson radical ranges for such functional inequality.
Keywords:triangular algebra  derivation system  Jordan derivation system  Hyers-Ulam-Rassias stability
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号