首页 | 本学科首页   官方微博 | 高级检索  
     


Reaching approximate agreement with mixed-mode faults
Authors:Kieckhafer   R.M. Azadmanesh   M.H.
Affiliation:Dept. of Comput. Sci. & Eng., Nebraska Univ., Lincoln, NE;
Abstract:In a fault-tolerant distributed system, different non-faulty processes may arrive at different values for a given system parameter. To resolve this disagreement, processes must exchange and vote upon their respective local values. Faulty processes may attempt to inhibit agreement by acting in a malicious or “Byzantine” manner. Approximate agreement defines one form of agreement in which the voted values obtained by the non-faulty processes need not be identical. Instead, they need only agree to within a predefined tolerance. Approximate agreement can be achieved by a sequence of convergent voting rounds, in which the range of values held by non-faulty processes is reduced in each round. Historically, each new convergent voting algorithm has been accompanied by ad-hoc proofs of its convergence rate and fault-tolerance, using an overly conservative fault model in which all faults exhibit worst-case Byzantine behavior. This paper presents a general method to quickly determine convergence rate and fault-tolerance for any member of a broad family of convergent voting algorithms. This method is developed under a realistic mixed-mode fault model comprised of asymmetric, symmetric, and benign fault modes. These results are employed to more accurately analyze the properties of several existing voting algorithms, to derive a sub-family of optimal mixed-mode voting algorithms, and to quickly determine the properties of proposed new voting algorithms
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号