首页 | 本学科首页   官方微博 | 高级检索  
     

基于分层匹配追踪算法的电能质量复合扰动参数辨识方法
引用本文:崔志强,王宁,贾清泉. 基于分层匹配追踪算法的电能质量复合扰动参数辨识方法[J]. 电力自动化设备, 2017, 37(3)
作者姓名:崔志强  王宁  贾清泉
作者单位:燕山大学 电气工程学院 电力电子节能与传动控制河北省重点实验室,河北 秦皇岛 066004,燕山大学 电气工程学院 电力电子节能与传动控制河北省重点实验室,河北 秦皇岛 066004,燕山大学 电气工程学院 电力电子节能与传动控制河北省重点实验室,河北 秦皇岛 066004
基金项目:国家自然科学基金资助项目(51477147);河北省教育厅资助科研项目(QN2015124);燕山大学青年教师自主研究计划课题(1B14027)
摘    要:针对电能质量中的复合扰动信号分析问题,提出一种粒子群优化(PSO)和匹配追踪(MP)算法相结合的分层搜索的原子分解方法。首先应用MP算法提取基波分量,对于去除基波分量的残差信号,利用快速傅里叶变换找寻能量最大的频率成分,采用PSO算法粗搜索出最佳匹配粒子,然后以最佳匹配粒子为中心,在一定范围内重新离散化,生成小规模原子库,再应用MP算法有针对性地进行细搜索,最终得到最佳匹配原子,提取出电能质量复合扰动特征参数。仿真结果表明,该方法能克服MP算法匹配时间长、计算量大及PSO优化MP算法残差积累过大、容易陷入局部最优、匹配参数不准确等缺点,且具有一定的抗噪性和实时性。

关 键 词:电能质量;原子分解;复合扰动;分层匹配追踪;粒子群优化算法;参数辨识

Parameter identification based on hierarchical matching pursuit algorithm for complex power quality disturbance
CUI Zhiqiang,WANG Ning and JIA Qingquan. Parameter identification based on hierarchical matching pursuit algorithm for complex power quality disturbance[J]. Electric Power Automation Equipment, 2017, 37(3)
Authors:CUI Zhiqiang  WANG Ning  JIA Qingquan
Affiliation:Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China,Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China and Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract:An atomic decomposition method based on the hierarchical matching pursuit algorithm combining PSO(Particle Swarm Optimization) and MP(Matching Pursuit) is proposed for analyzing the complex power quality disturbance. MP algorithm is applied to extract the fundamental frequency component and FFT is then used to search the frequency component with the maximum energy. PSO algorithm is applied to extract the best matching particle from the residual signals and re-discretization around the particle within a certain range is then used to generate a small-scale atom library with the particle as its center. MP algorithm is applied again to purposely search the best matching atom for extracting the characteristic parameters of power quality disturbance. Simulative results show that, with a certain anti-noise capability and real-time performance, the proposed method avoids the defects of MP algorithm, such as long matching time and great computation load, as well as the defects of PSO-MP algorithm, such as excessive residual accumulation, easy local optimum and inaccurate matching parameter.
Keywords:power quality   atomic decomposition   complex disturbances   hierarchical matching pursuit   particle swarm optimization algorithm   parameter identification
本文献已被 CNKI 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号