首页 | 本学科首页   官方微博 | 高级检索  
     


Load reduction on a clipper liberty wind turbine with linear parameter‐varying individual blade pitch control
Authors:Daniel Ossmann  Julian Theis  Peter Seiler
Affiliation:1. Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota, USA;2. Institute of Control Systems, Hamburg University of Technology, Hamburg, Germany
Abstract:The increasing size of modern wind turbines also increases the structural loads caused by effects such as turbulence or asymmetries in the inflowing wind field. Consequently, the use of advanced control algorithms for active load reduction has become a relevant part of current wind turbine control systems. In this paper, an individual blade pitch control law is designed using multivariable linear parameter‐varying control techniques. It reduces the structural loads both on the rotating and non‐rotating parts of the turbine. Classical individual blade pitch control strategies rely on single‐control loops with low bandwidth. The proposed approach makes it possible to use a higher bandwidth since it accounts for coupling at higher frequencies. A controller is designed for the utility‐scale 2.5 MW Liberty research turbine operated by the University of Minnesota. Stability and performance are verified using the high‐fidelity nonlinear simulation and baseline controllers that were directly obtained from the manufacturer. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:wind turbine control  load reduction  robust control
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号