首页 | 本学科首页   官方微博 | 高级检索  
     


Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet
Affiliation:1. Department of Mathematics, Quaid-I-Azam University, 45320, Islamabad 44000, Pakistan;2. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589, Saudi Arabia;3. Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan;1. Department of Mathematics and Statistics, FBAS, IIUI, H-10 Sector, Islamabad, 44000, Pakistan;2. Department of Mechanical Engineering, University of California Riverside, USA
Abstract:The steady laminar flow and heat transfer of a second grade fluid over a radially stretching sheet is considered. The axisymmetric flow of a second grade fluid is induced due to linear stretching of a sheet. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). Introducing the dimensionless quantities the governing partial differential equations are transformed to ordinary differential equations. The developed non-linear differential equations are solved analytically using homotopy analysis method (HAM). The series solutions are developed and the convergence of these solutions is explicitly discussed. The analytical expressions for velocity and temperature are constructed and are shown graphically. The numerical values for the skin friction coefficient and the Nusselt number are entered in tabular form. Attention has been focused to the variations of the emerging parameters such as second grade parameter, Prandtl number and the Eckert number. Finally, comparison between the HAM and numerical solutions are also included and found in excellent agreement.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号