首页 | 本学科首页   官方微博 | 高级检索  
     


Analytical solution for functionally graded magneto-electro-elastic plane beams
Affiliation:1. College of Civil Engineering, Hebei University of Engineering, Handan 056038, PR China;2. Department of Civil Engineering, The University of Akron, OH 44325-3905, USA
Abstract:This paper investigates the plane stress problem of generally anisotropic magneto-electro-elastic beams with the coefficients of elastic compliance, piezoelectricity, dielectric impermeability, piezomagnetism, magnetoelectricity, and magnetic permeability being arbitrary functions of the thickness coordinate. Firstly, partial differential equations governing stress function, electric displacement function and magnetic induction function are derived for plane problems of anisotropic functionally graded magneto-electro-elastic materials. Secondly, these functions are assumed in forms of polynomials in the longitudinal coordinate and can be acquired through a successive integral approach. The analytical expressions of axial force, bending moment, shear force, average electric displacement, average magnetic induction, displacements, electric potential and magnetic potential are then deduced. Thirdly, problems of functionally graded magneto-electro-elastic plane beams are considered, with integral constants being completely determinable from boundary conditions. A series of analytical solutions are thus obtained, including the solutions for beams under tension and pure bending, for cantilever beams subjected to shear force applied at the free end, and for cantilever beams subjected to uniform load. These solutions can be easily degenerated into the solutions for homogenous anisotropic magneto-electro-elastic beams. Finally, a numerical example is presented to show the application of the proposed method.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号