首页 | 本学科首页   官方微博 | 高级检索  
     


Gene V protein dimerization and cooperativity of binding of poly(dA)
Authors:TC Terwilliger
Affiliation:Structural Biology Group, Los Alamos National Laboratory, New Mexico 87545, USA.
Abstract:Gene V protein of bacteriophage f1 is a dimeric protein that binds cooperatively to single-stranded nucleic acids. In order to determine whether a monomer-dimer equilibrium has an appreciable effect upon the thermodynamics of gene V protein binding to nucleic acids, the dissociation constant for the protein dimer was investigated using size-exclusion chromatography. At concentrations ranging from 5 x 10(-10) to 1.2 x 10(-5) M, the Stokes radius of the protein was that expected of the dimer of the gene V protein. The Stokes radius of the protein was also independent of salt concentration from 0.2 to 1.0 M NaCl in a buffer containing 10 mM Tris-HCl, pH 7.4, and 1 mM EDTA. The binding of the dimeric gene V protein to poly(dA) was studied using a simplified lattice model for protein-protein interactions adapted for use with a dimeric protein that binds simultaneously to two strands of nucleic acid. Interpretation of the salt dependence, C = [d log(Kint omega)]/[d log(NaCl)], of binding of such a dimeric protein to nucleic acid using the theory of Record et al. (Record, M. T., et al. (1976) J. Mol. Biol. 107, 145-158) indicates that C is a function of the numbers of cations and anions released from protein and nucleic acid upon binding of the dimer, not of the monomer. Cooperativity of gene V protein binding to poly(dA) was studied with titration experiments that are sensitive to the degree of cooperativity of binding. The cooperativity factor omega, defined as the ratio of the binding constant for a site adjacent to a previously bound dimer to that for an isolated site, was found to be relatively insensitive to salt, with a value in the range of 2000-7000 for binding to poly(dA) at 3 degrees C and at 23 degrees C. This high cooperativity factor supports the suggestion that protein-protein contacts play a major role in the formation of the superhelical gene V protein-single-stranded nucleic acid complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号