首页 | 本学科首页   官方微博 | 高级检索  
     


Sulfur and Nitrogen Co‐Doped Graphene for Metal‐Free Catalytic Oxidation Reactions
Authors:Xiaoguang Duan  Kane O'Donnell  Hongqi Sun  Yuxian Wang  Shaobin Wang
Affiliation:1. Department of Chemical Engineering, Curtin University, WA, Australia;2. Department of Imaging and Applied Physics, Curtin University, WA, Australia
Abstract:Sulfur and nitrogen co‐doped reduced graphene oxide (rGO) is synthesized by a facile method and demonstrated remarkably enhanced activities in metal‐free activation of peroxymonosulfate (PMS) for catalytic oxidation of phenol. Based on first‐order kinetic model, S–N co‐doped rGO (SNG) presents an apparent reaction rate constant of 0.043 ± 0.002 min?1, which is 86.6, 22.8, 19.7, and 4.5‐fold as high as that over graphene oxide (GO), rGO, S‐doped rGO (S‐rGO), and N‐doped rGO (N‐rGO), respectively. A variety of characterization techniques and density functional theory calculations are employed to investigate the synergistic effect of sulfur and nitrogen co‐doping. Co‐doping of rGO at an optimal sulfur loading can effectively break the inertness of carbon systems, activate the sp2‐hybridized carbon lattice and facilitate the electron transfer from covalent graphene sheets for PMS activation. Moreover, both electron paramagnetic resonance (EPR) spectroscopy and classical quenching tests are employed to investigate the generation and evolution of reactive radicals on the SNG sample for phenol catalytic oxidation. This study presents a novel metal‐free catalyst for green remediation of organic pollutants in water.
Keywords:co‐doping  density functional theory  graphene  metal‐free catalysis  catalysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号