首页 | 本学科首页   官方微博 | 高级检索  
     


Residual stresses and strains in orthogonal metal cutting
Authors:C. Shet  X. Deng  
Affiliation:Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
Abstract:The finite element method is used to simulate and analyze the orthogonal metal cutting process under plane strain conditions, with focus on the residual stress and strain fields in the finished workpiece. Various modeling options have been employed. The frictional interaction along the tool-chip interface is modeled with a modified Coulomb friction law. Chip separation is modeled by the nodal release technique based on a critical stress criterion. Temperature-dependent material properties and a range of tool rake angle and friction coefficient values are considered. It is found that while thermal cooling increases the residual stress level, the effects of the rake angle and the friction coefficient are nonlinear and depend on the range of these parameters. The predicted residual stress results compare well with experimental observations available in the literature.
Keywords:Finite element simulation   Orthogonal metal cutting   Residual stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号