首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element modeling of friction stir welding—thermal and thermomechanical analysis
Authors:C M Chen  R Kovacevic  
Affiliation:Research Center for Advanced Manufacturing, Department of Mechanical Engineering, Southern Methodist University, International Parkway, Suite 100, Richardson, TX 75081, USA
Abstract:Friction stir welding (FSW) is a relatively new welding process that may have significant advantages compared to the fusion processes as follow: joining of conventionally non-fusion weldable alloys, reduced distortion and improved mechanical properties of weldable alloys joints due to the pure solid-state joining of metals. In this paper, a three-dimensional model based on finite element analysis is used to study the thermal history and thermomechanical process in the butt-welding of aluminum alloy 6061-T6. The model incorporates the mechanical reaction of the tool and thermomechanical process of the welded material. The heat source incorporated in the model involves the friction between the material and the probe and the shoulder. In order to provide a quantitative framework for understanding the dynamics of the FSW thermomechanical process, the thermal history and the evolution of longitudinal, lateral, and through-thickness stress in the friction stirred weld are simulated numerically. The X-ray diffraction (XRD) technique is used to measure the residual stress of the welded plate, and the measured results are used to validate the efficiency of the proposed model. The relationship between the calculated residual stresses of the weld and the process parameters such as tool traverse speed is presented. It is anticipated that the model can be extended to optimize the FSW process in order to minimize the residual stress of the weld.
Keywords:Friction stir welding  Finite element method  Thermal history  Thermomechanical process  Evolutionary Stress  Residual stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号