首页 | 本学科首页   官方微博 | 高级检索  
     

带限函数外推算法收敛性研究
引用本文:张兆田,渠刚荣,姜明. 带限函数外推算法收敛性研究[J]. 工程数学学报, 2004, 21(2): 143-148
作者姓名:张兆田  渠刚荣  姜明
作者单位:中国科学院自动化研究所,100080;北京交通大学,北京,100044;北京大学数学学院,北京,100871
基金项目:国家自然科学基金项目(69931010,60372015,60272018),北京交通大学校基金项目(2002SM054),国家973项目(2003CB716101).
摘    要:Gerchberg-Papoulis(G-P)算法是解决带限信号外推问题的一个广泛使用的迭代算法。在数据存在噪声时,本文论证了G-P迭代算法的收敛性不再成立,其原因是相应的线性算子在L^2范数下是非压缩算子,并以数值模拟说明了这一问题。针对这一问题,我们提出改进的Gerchberg-Papoulis(IG-P)算法,并研究了该算法在L^2范数下的收敛性质。数值模拟结果表明,IG-P迭代算法具有较好的信号分辨能力和收敛性质。

关 键 词:带限函数  外推  迭代算法  收敛性
文章编号:1005-3085(2004)02-0143-05
修稿时间:2003-12-13

Convergence on Extrapolation for Band-limited Function
ZHANG Zhao-tian,QU Gang-rong,JIANG Ming. Convergence on Extrapolation for Band-limited Function[J]. Chinese Journal of Engineering Mathematics, 2004, 21(2): 143-148
Authors:ZHANG Zhao-tian  QU Gang-rong  JIANG Ming
Affiliation:ZHANG Zhao-tian~1,QU Gang-rong~2,JIANG Ming~3
Abstract:The Gerchberg-Papoulis (G-P) algorithm is a widely applied iterative method for the extrapolation of band-limited signals. When the observed data are corrupted with noise, the G-P algorithm is not convergent any more because the corresponding linear operator is not contractive under the L~2 norm. This phenomenon is also illustrated with numerical simulation. We propose an improved Gerchberg-Papoulis(IG-P) algorithm and study its convergence properties. It is proved that the IG-P algorithm is convergent under the L~2 norm. Numerical stimulation is provided to demonstrate that the convergence and signal resolving power of I-GP are better than those of the original G-P algorithm when the data are corrupted with noise.
Keywords:band-limited signal  extrapolation  iterative algorithm  convergence
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号