首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of pulsed magnetic field on density reduction of high flow velocity plasma sheath
Authors:Jiahao XU  Xiaoping LI  Donglin LIU  Yuan WANG
Abstract:A three-dimensional model is proposed in this paper to study the effect of the pulsed magnetic field on the density distribution of high flow velocity plasma sheath. Taking the typical parameters of plasma sheath at the height of 71 km as an example, the distribution characteristics and time evolution characteristics of plasma density in the flow field under the action of pulsed magnetic field, as well as the effect of self-electric field on the distribution of plasma density, are studied. The simulation results show that pulsed magnetic field can effectively reduce the density of plasma sheath. Meanwhile, the simulation results of three-dimensional plasma density distribution show that the size of the density reduction area is large enough to meet the communication requirements of the Global Position System(GPS) signal. Besides, the location of density reduction area provides a reference for the appropriate location of antenna. The time evolution of plasma density shows that the effective density reduction time can reach 62% of the pulse duration, and the maximum reduction of plasma density can reach 55%. Based on the simulation results, the mechanism of the interaction between pulsed magnetic field and plasma flow field is physically analyzed. Furthermore, the simulation results indicate that the density distributions of electrons and ions are consistent under the action of plasma self-electric field.However, the quasi neutral assumption of plasma in the flow field is not appropriate, because the self-electric field of plasma will weaken the effect of the pulsed magnetic field on the reduction of electron density, which cannot be ignored. The calculation results could provide useful information for the mitigation of communication blackout in hypersonic vehicles.
Keywords:pulsed magnetic field  plasma sheath  communication blackout
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号