首页 | 本学科首页   官方微博 | 高级检索  
     

基于相异性度量选取初始聚类中心改进的K-means聚类算法
作者姓名:廖纪勇  吴晟  刘爱莲
作者单位:昆明理工大学信息工程与自动化学院,昆明650500
摘    要:选取合理的初始聚类中心是正确聚类的前提,针对现有的K-means算法随机选取聚类中心和无法处理离群点等问题,提出一种基于相异性度量选取初始聚类中心改进的K-means聚类算法.算法根据各数据对象之间的相异性构造相异性矩阵,定义了均值相异性和总体相异性两种度量准则;然后据此准则来确定初始聚类中心,并利用各簇中数据点的中位数代替均值以进行后续聚类中心的迭代,消除离群点对聚类准确率的影响.此外,所提出的算法每次运行结果保持一致,在初始化和处理离群点方面具有较好的鲁棒性.最后,在人工合成数据集和UCI数据集上进行实验,与3种经典聚类算法和两种优化初始聚类中心改进的K-means算法相比,所提出的算法具有较好的聚类性能.

关 键 词:聚类分析  K-means算法  初始聚类中心  离群点  相异性度量  鲁棒性
本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号