Abstract: | In a 2.45 GHz electron cyclotron resonance(ECR) ion thruster powered with rod antenna under a cross magnetic field, abnormal behaviours such as sudden drop of ion beam current(Ib) and larger increasing-rate of Ibin the high microwave power(Pw) discharges at high gas flow rates were observed. A differential method was proposed to reveal the changes in the radial profiles of gray values extracted from the end-view discharge images. The increasing-rate of Ibwith respect to Pwwas used to evaluate efficiencies of ion production and transport. Analyses indicate that discharges are dominantly sustained by ordinary wave via electron heating in the electron plasma resonance layer that can shift along the rod-antenna, and extraordinary wave can only ignite a discharge in the ECR layer in the low gas flow rate regime. In terms of the confinement region defined by the magnetic field lines intercepting with the screen grid, the confinement region of the optimized 2.45 GHz cross magnetic field takes the shape of hourglass, enabling the high increasing-rate of I_b with respect to P_w in high power discharges at high gas flow rates.Correlated with the accompanied bright boundary layer appearing in the differentiated image, the sudden drop of I_b in the low gas flow rate regime is attributed to the discharge ignited by the enhanced extraordinary wave in the ECR layer neighbouring the narrowest confinement region,where the produced ions can promptly enter the loss region. |