首页 | 本学科首页   官方微博 | 高级检索  
     

改进Faster RCNN在铝型材表面缺陷检测中的应用研究
作者单位:;1.中国计量大学机电工程学院
摘    要:目的:为了解决传统目标检测方法在应对极端长宽比和小目标检测时存在的准确率低的问题,设计了一种改进Faster RCNN的铝型材表面缺陷检测方法。方法:在Faster RCNN的基础上,以残差网络替换原始VGG16网络提取图像特征,采用特征金字塔网络提取并融合多尺度的特征图,合成低级和高级语义信息。结果:在4 000张图片测试集的基础上,检测准确率达到78.9%,召回率为85.6%,均衡平均数为82.1%,相比于原始Faster RCNN模型,分别提高了16.2%、17%、16.6%。结论:相对于原始Faster RCNN模型,本文采用的改进算法在缺陷检测上有更好的效果,从而为计算机辅助小目标缺陷检测做了可行性论证。

关 键 词:缺陷检测  深度学习  Faster RCNN  残差神经网络  多尺度特征融合

Research on application of improved Faster RCNN in surface defect detection of aluminum profiles
Abstract:
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号