首页 | 本学科首页   官方微博 | 高级检索  
     


Combustion of GAP/HMX and GAP/TAGN Energetic Composite Materials
Authors:Naminosuke Kubota  Takuo Kuwahara
Abstract:Energetic composite materials (ECM) have high thermodynamic potential and flexible design capability. Two types of ECM were formulated as mixtures of glycidyl azide polymer (GAP) and crystalline materials. The crystalline materials evaluated were cyclotetramethylene tetranitramine (HMX) and triaminoguanidine nitrate (TAGN). The thermochemical properties of HMX and TAGN were different to each other: HMX is a high energy material but the burning rate is lower than that of TAGN. TAGN produces hydrogen as a combustion product and the thermodynamic potential becomes high even though the flame temperature is low. The results of burning rate measurement tests indicate that the burning rates of both ECM are decreased significantly by the addition of HMX and TAGN even though the burning rates of GAP, HMX, and TAGN are higher than those of the ECM. The temperature sensitivity of burning rate of GAP is reduced significantly by the addition of HMX and remains unchanged by the addition of TAGN. The reduced burning rates of GAP/HMX and GAP/TAGN are caused by the reduced heat flux transferred back from the gas phase to the burning surface. The reduced heat release at the burning surface of GAP/HMX is responsible for the reduced temperature sensitivity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号