首页 | 本学科首页   官方微博 | 高级检索  
     


Cisplatin ototoxicity. An electrophysiological dose-effect study in albino guinea pigs
Authors:CH Stengs  SF Klis  EH Huizing  GF Smoorenburg
Affiliation:Geraldine Brush Cancer Research Institute, California Pacific Medical Center Research Institute, San Francisco, CA 94115, USA.
Abstract:Accumulating evidence indicates that the endogenous opioid peptides dynorphinA-(1-17) and dynorphinA-(1-13) interact not only with opioid but also with yet poorly characterized non-opioid receptors. The latter have been implicated in a number of the effects of dynorphins including induction of ACTH release in sheep and in AtT 20 cells, a pituitary-derived mouse cell line. AtT 20 cells do not express opioid receptors and therefore are particularly suitable for search of non-opioid dynorphin receptors. We report here that 3H-dynorphinA-(1-13)-NH2 associates specifically with AtT 20 cells, apparently through an uptake process and a binding site. Within the cell, it binds preferentially to fractions containing secretory vesicles, with a Kd of about 100 nM. DynorphinA-(1-17), and several non-opioid fragments of dynorphin, including A-(2-17), A-(2-16) and A-(2-13), compete with 3H-dynorphinA-(1-13)-NH2 for that site with IC50s ranging from 200 nM to 2 microM. ACTH(1-39) also competes with 3H-dynorphinA-(1-13)-NH2 for the site with an IC50 of about 300 nM. DynorphinA-(2-17) at microM concentrations stimulates release of ACTH from the isolated vesicles. The results indicate the presence of a non-opioid dynorphin binding site on the secretory vesicle fractions of AtT20 cells that might be involved in ACTH release. The ability of ACTH itself to compete for the binding sites associated with the vesicles suggest that those sites may be involved in an autocrine loop.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号