首页 | 本学科首页   官方微博 | 高级检索  
     


Dielectric barrier discharge molecular emission spectrometer as multichannel GC detector for halohydrocarbons
Authors:Li Wei  Zheng Chengbin  Fan Guangyu  Tang Li  Xu Kailai  Lv Yi  Hou Xiandeng
Abstract:A novel microplasma molecular emission spectrometer based on an atmospheric pressure dielectric barrier discharge (DBD) is described and further used as a promising multichannel GC detector for halohydrocarbons. The plasma is generated in a DBD device consisting of an outer electrode (1.2 mm in diameter) and an inner electrode (1.7 mm in diameter) within a small quartz tube (3.0 mm i.d. × 5.0 mm o.d. × 50 mm), wherein analyte molecules are excited by the microplasma to generate molecular emission. Therefore, the analytes are selectively and simultaneously detected with a portable charge-coupled device (CCD) via multichannel detection of their specific emission lines. The performance of this method was evaluated by separation and detection of a model mixture of chlorinated hydrocarbons (CHCl(3) and CCl(4)), brominated hydrocarbons (CH(2)Br(2) and CH(2)BrCH(2)Br), and iodinated hydrocarbons (CH(3)I and (CH(3))(2)CHI) undergoing GC with the new detector. The completely resolved identification of the tested compounds was achieved by taking advantages of both chromatographic and spectral resolution. Under the optimized conditions with the CCD spectrometer set at 258, 292, and 342 nm channels for determination of chlorinated hydrocarbons, brominated hydrocarbons, and iodinated hydrocarbons, respectively, this detector with direct injection provided detection limits of 0.07, 0.06, 0.3, 0.04, 0.05, and 0.02 μg mL(-1) for CCl(4), CHCl(3), CH(2)Cl(2), CH(3)I, CH(3)CH(2)I, and (CH(3))(2)CHI, respectively.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号