首页 | 本学科首页   官方微博 | 高级检索  
     

融合2DPCA和模糊2DLDA的人脸识别
引用本文:赵冬娟,梁久祯.融合2DPCA和模糊2DLDA的人脸识别[J].计算机应用,2011,31(2):420-422.
作者姓名:赵冬娟  梁久祯
作者单位:1. 江南大学物联网工程学院2. 江南大学
基金项目:江苏省自然科学基金资助项目
摘    要:结合模糊集理论、双向二维主成分-线性鉴别分析((2D)2PCALDA)的特点,提出一种新的人脸图像特征提取方法。算法首先对人脸图像进行二维主成分分析(2DPCA)处理,再用模糊K近邻算法计算图像的隶属度矩阵,并将其融入到2DLDA过程中,从而得到模糊类间散射矩阵和模糊类内散射矩阵。与(2D2PCALDA相比,该算法充分利用了(2D)2PCALDA的优点,有效地提取了行和列的识别信息,并充分考虑了样本的分布信息。在Yale和FERET人脸数据库上的实验结果表明,该方法识别效果优于(2D)2PCALDA、双向二维主成分分析((2D)2PCA)等方法。

关 键 词:人脸识别  二维主成分分析  二维线性鉴别分析  模糊Fisherface  特征提取  
收稿时间:2010-07-20
修稿时间:2010-09-13

Face recognition algorithm fusing 2DPCA and fuzzy 2DLDA
ZHAO Dong-juan,LIANG Jiu-zhen.Face recognition algorithm fusing 2DPCA and fuzzy 2DLDA[J].journal of Computer Applications,2011,31(2):420-422.
Authors:ZHAO Dong-juan  LIANG Jiu-zhen
Affiliation:(College of Internet of Things Engineering,Jiangnan University,Wuxi Jiangsu 214122,China)
Abstract:A new face image feature extraction method which combined fuzzy set theory and Two-Dimentional Two-Dimentional Principal Component Analysis-Linear Discriminant Analysis ((2D)2PCALDA) was proposed. Firstly, Two-Dimentional Principal Component Analysis (2DPCA) was used to extract the optimal projective vectors from face image. Then, the membership degree matrix was calculated by fuzzy K-nearest neighbor algorithm, and it was merged into the process of Two-Dimentional Linear Discriminant Analysis (2DLDA). Finally, fuzziness between-class scatter matrix and fuzziness within class scatter matrix were obtained. Compared with (2D)2PCALDA, the method made full use of the advantages of (2D)2PCALDA. It not only effectively extracted the row and column recognition information, but also made full use of the distribution information of samples. The experiments based on Yale and FERET face databases show that the method can have better recognition effect than (2D)2PCALDA and (2D)2PCA.
Keywords:face recognition  Two-Dimensional Principal Component Analysis (2DPCA)  Two-Dimensional Linear Discriminant Analysis (2DLDA)  fuzzy Fisherface  feature extraction  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号