首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波分解和K2DPCA-2DLDA的手背静脉识别
引用本文:吕岑,程诚,赵东霞. 基于小波分解和K2DPCA-2DLDA的手背静脉识别[J]. 计算机应用, 2011, 31(2): 423-425. DOI: 10.3724/SP.J.1087.2011.00423
作者姓名:吕岑  程诚  赵东霞
作者单位:1. 2. 陕西科技大学
摘    要:提出了一种基于小波分解和二维主成分分析-二维线性判别式分析(K2DPCA-2DLDA)的手背静脉识别方法,选用db4小波基对原图进行小波分解。对其低频子图进行K2DPCA映射获得低维空间特征,通过对此低维空间特征进行2DLDA变换得到最终特征表达,利用最近邻法则进行了分类。实验结果表明,该方法能提高手背静脉识别率,有效减少识别时间。

关 键 词:生物识别技术  手背静脉  小波分解  核二维主成分分析  二维线性判别式分析  
收稿时间:2010-07-06
修稿时间:2010-09-16

Dorsal hand vein recognition based on wavelet decomposition and K2DPCA-2DLDA
L Cen,CHENG Cheng,ZHAO Dong-xia. Dorsal hand vein recognition based on wavelet decomposition and K2DPCA-2DLDA[J]. Journal of Computer Applications, 2011, 31(2): 423-425. DOI: 10.3724/SP.J.1087.2011.00423
Authors:L Cen  CHENG Cheng  ZHAO Dong-xia
Affiliation:L(U) Cen,CHENG Cheng,ZHAO Dong-xia
Abstract:Dorsal hand vein recognition based on wavelet decomposition and K2DPCA-2DLDA was proposed in this paper, and db4 wavelet was used to decompose the original image. K2DPCA transformation was used for the sub image of low frequency to obtain low dimensional space characteristics. Then, 2DLDA transformation was used to further reduce the dimension for obtaining the final feature expression. Finally, the features were classified according to the nearest neighbor classification rule. The experimental results show that the method can improve the hand dorsal vein recognition rate and reduce the recognition time effectively.
Keywords:biometrics  dorsal hand vein  wavelet decomposition  Kernel Two-Dimensional Principal Component Analysis (K2DPCA)  Two-Dimensional Linear Discriminant Analysis (2DLDA)  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号