首次积分与(n+1)维多重sine-Gordon方程的无穷序列新解 |
| |
引用本文: | 套格图桑. 首次积分与(n+1)维多重sine-Gordon方程的无穷序列新解[J]. 量子电子学报, 2017, 0(3): 316-326. DOI: 10.3969/j.issn.1007-5461.2017.03.008 |
| |
作者姓名: | 套格图桑 |
| |
作者单位: | 内蒙古师范大学数学科学学院,内蒙古 呼和浩特,010022 |
| |
基金项目: | National Natural Science Foundation of China(国家自然科学基金;China(内蒙古自治区自然科学基金;China(内蒙古自治区高等学校科学研究基金 |
| |
摘 要: | 通过几种函数变换把(n+1)维多重sine-Gordon方程的求解转化为常微分方程组的求解.利用常微分方程组的首次积分与可求解几种常微分方程的Bcklund变换和解的非线性叠加公式,构造了(n+1)维多重sine-Gordon方程的无穷序列类孤子新解.
|
关 键 词: | 非线性方程 首次积分 (n%2B1)维多重sine-Gordon方程 B(a)cklund变换 无穷序列类孤子新解 |
The first integral and new infinite sequence solutions of (n + 1)-dimensional multiple sine-Gordon equation |
| |
Abstract: | The solution of (n+1)-dimensional multiple sine-Gordon equation is transformed into solution of the set of ordinary differential equations by several function transformations.New infinite sequence soliton-like solutions of (n + 1)-dimensional multiple sine-Gordon equation are constructed by combining the first integrals of the set of ordinary differential equations with B(a)cklund transformation and the nonlinear superposition formula of solutions to several kinds of solvable ordinary differential equations. |
| |
Keywords: | nonlinear equation the first integral (n + 1)-dimensional multiple sine-Gordon equation B(a)cklund transformation new infinite sequence soliton-like solutions |
本文献已被 万方数据 等数据库收录! |