首页 | 本学科首页   官方微博 | 高级检索  
     

基于Kohonen神经网络的燃气轮机故障诊断
引用本文:田质广,董振东,孟宪尧. 基于Kohonen神经网络的燃气轮机故障诊断[J]. 热能动力工程, 2005, 20(6): 562-564
作者姓名:田质广  董振东  孟宪尧
作者单位:大连海事大学,自动化所,辽宁,大连,116026;济南钢铁设计院,山东,济南,250002
基金项目:山东省自然科学基金资助项目(Y2004F15)
摘    要:针对基于热力参数的燃气轮机8种典型常见故障,根据Kohonen神经网络诊断的工作原理、诊断特征,研究了基于Kohonen神经网络方法在燃气轮机故障诊断中的应用方法,得出了Kohonen模型具有自学习功能,运算速度快,类型识别能力强的优点,是一种适合于燃气轮机分类故障较好的具有特色的神经网络。

关 键 词:燃气轮机  Kohonen神经网络  故障诊断
文章编号:1001-2060(2005)06-0562-03
收稿时间:2005-03-25
修稿时间:2005-03-252005-06-30

Kohonen Neural Network-based Gas Turbine Fault Diagnosis
TIAN Zhi-guang,DONG Zhen-dong,MENG Xian-yao. Kohonen Neural Network-based Gas Turbine Fault Diagnosis[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(6): 562-564
Authors:TIAN Zhi-guang  DONG Zhen-dong  MENG Xian-yao
Abstract:With respect to eight kinds of thermodynamic parameters-based gas turbine typical and common faults studied are the Kohonen neural network-based methods used for diagnosing gas turbine faults on the basis of diagnostic working principles and specific features of the Kohonen neural network.It has been found that the model of Kohonen network has the following merits: self-learning function,rapid operating speed and strong pattern-recognition ability.The Kohonen network is a relatively good neural network with characteristic features suitable for diagnosing various gas turbine faults.
Keywords:gas turbine  Kohonen neural network  fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《热能动力工程》浏览原始摘要信息
点击此处可从《热能动力工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号