Structural reliability analysis for implicit performance functions using artificial neural network |
| |
Authors: | Jian Deng Desheng Gu Xibing Li Zhong Qi Yue |
| |
Affiliation: | aSchool of Resources and Safety Engineering, Central South University, Changsha, 410083, Hunan, People’s Republic of China;bDepartment of Civil Engineering, The University of Hong Kong, Hong Kong, People’s Republic of China |
| |
Abstract: | The Monte-Carlo simulation (MCS), the first-order reliability methods (FORM) and the second-order reliability methods (SORM), are three reliability analysis methods that are commonly used for structural safety evaluation. The MCS requires the calculations of hundreds and thousands of performance function values. The FORM and SORM demand the values and partial derivatives of the performance function with respect to the design random variables. Such calculations could be time-consuming or cumbersome when the performance functions are implicit. Such implicit performance functions are normally encountered when the structural systems are complicated and numerical analysis such as finite element methods has to be adopted for the prediction.To address this issue, this paper presents three artificial neural network (ANN)-based reliability analysis methods, i.e. ANN-based MCS, ANN-based FORM, and ANN-based SORM. These methods employ multi-layer feedforward ANN technique to approximate the implicit performance functions. The ANN technique uses a small set of the actual values of the implicit performance functions. Such a small set of actual data is obtained via normal numerical analysis such as finite element methods for the complicated structural system. They are used to develop a trained ANN generalization algorithm. Then a large number of the values and partial derivatives of the implicit performance functions can be obtained for conventional reliability analysis using MCS, FORM or SORM. Examples are given in the paper to illustrate why and how the proposed ANN-based structural reliability analysis can be carried out. The results have shown the proposed approach is applicable to structural reliability analysis involving implicit performance functions. The present results are compared well with those obtained by the conventional reliability methods such as the direct Monte-Carlo simulation, the response surface method and the FORM method 2. |
| |
Keywords: | Implicit performance function Finite element method Monte-Carlo simulation First-order reliability method Second-order reliability method Artificial neural network |
本文献已被 ScienceDirect 等数据库收录! |
|