首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群和BP混合算法的土壤有毒重金属含量预测
引用本文:范多进,路小娟. 基于粒子群和BP混合算法的土壤有毒重金属含量预测[J]. 工业仪表与自动化装置, 2012, 0(5): 109-112
作者姓名:范多进  路小娟
作者单位:1. 兰州交通大学国家绿色镀膜技术与装备工程技术研究中心,兰州,730070
2. 兰州交通大学自动化与电气工程学院,兰州,730070
基金项目:甘肃省科技支撑计划项目(1104GKCA057);兰州市计划支撑项目(2009-1-34)
摘    要:利用当前重金属的含量去预测未来有毒重金属的含量,就可以采取有效的措施预防,对人们的健康有着重大意义.该文主要应用粒子群和BP混合算法的神经网络对甘肃某地区的土壤进行了预测,得到的预测数据和实际的基本相符,因此,该预测算法应用到土壤的预测中具有良好的效果,有良好的应用和推广前景.

关 键 词:土壤重金属  粒子群  BP混合算法  神经网络

Prediction of toxic heavy metals soil based on particle swarm optimization and BP hybrid alaorithm
FAN Duojin , LU Xiaojuan. Prediction of toxic heavy metals soil based on particle swarm optimization and BP hybrid alaorithm[J]. Industrial Instrumentation & Automation, 2012, 0(5): 109-112
Authors:FAN Duojin    LU Xiaojuan
Affiliation:b (a. National Engineering Research Center for Technology and Equipment of Green Coating; b. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract:Using present contents of heavy metals to predict the future content, it is meaningful for health to pro - take valid measures. This paper use application of particle swarm and BP hybrid algorithm neural network to predict metal content in an area of Gansu. The predicted date is accord with actual date. It shows positive effect to apply the prediction algorithm to the prediction of soil. Therefore, it has good application and spread prospect.
Keywords:soil heavy metal  particle swarm  BP hybrid algorithm  neural network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号