首页 | 本学科首页   官方微博 | 高级检索  
     

氨水改性氧化石墨烯高效催化 Knoevenagel缩合反应
引用本文:薛冰. 氨水改性氧化石墨烯高效催化 Knoevenagel缩合反应[J]. 精细化工, 2018, 35(9)
作者姓名:薛冰
作者单位:常州大学石油化工学院江苏省绿色催化材料与技术重点实验室
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:通过浸渍法制备了氨水改性氧化石墨烯,考察了其在苯甲醛和丙二腈的Knoevenagel缩合反应中的催化性能。通过X射线粉末衍射(XRD)、拉曼光谱(Raman)、傅里叶变换红外光谱(FTIR)、NH3程序升温脱附(NH3-TPD)、元素分析等对催化剂进行了表征,考察了工艺条件对其催化剂性能的影响。结果表明:氨水改性氧化石墨烯可以有效地将NH4+固载于氧化石墨烯表面;氧化石墨烯经氨水改性后在苯甲醛和丙二腈的Knoevenagel缩合反应中表现出良好的催化性能,随着改性实验中氨水质量分数的增加,催化剂的活性不断增加。以质量分数5%的氨水为改性剂制备的催化剂(AW-GO-5%)在60℃、4 h下催化苯甲醛和丙二腈的Knoevenagel缩合反应,苯甲醛的转化率高达93.6%,产物苄亚基丙二腈的选择性为94.8%,该催化剂重复使用4次后催化活性仍较高。

关 键 词:氧化石墨烯;氨水;改性;羧酸铵;脑文格缩合
收稿时间:2017-08-17
修稿时间:2017-12-13

Graphene Oxide Modified with Aqueous Ammonia Efficiently Catalyzed Knoevenagel Condensation
XUE Bing. Graphene Oxide Modified with Aqueous Ammonia Efficiently Catalyzed Knoevenagel Condensation[J]. Fine Chemicals, 2018, 35(9)
Authors:XUE Bing
Affiliation:School of Petrochemical Engineering, Changzhou University
Abstract:Graphene oxide modified with aqueous ammonia samples were prepared by impregnation method, and the catalytic performances of the as-prepared samples in Knoevenagel condensation reaction of benzaldehyde with malononitrile were investigated. The properties of the catalysts were characterized by X-ray diffraction, Raman spectra, Fourier transform infrared spectroscopy, NH3-TPD and elemental analysis. Results indicated that graphene oxide modified with aqueous ammonia samples exhibited excellent performances in the Knoevenagel condensation reaction of benzaldehyde with malononitrile. The catalytic activity increased gradually with increasing the concentration of aqueous ammonia. A 93.6% conversion of benzaldehyde and a 94.8% selectivity of benzylidene malononitrile was obtained over graphene oxide modified with 5 wt% aqueous ammonia in the appropriate conditions. It is very important that the graphene oxide modified with aqueous ammonia samples can be reused for 5 times only by simple filtration after reaction. Characterization results indicated that graphene oxide modified by ammonia can effectively immobilize NH4+ on the surface of graphene oxide.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《精细化工》浏览原始摘要信息
点击此处可从《精细化工》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号