首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应遗传算法的图像匹配
引用本文:郑军,诸静. 基于自适应遗传算法的图像匹配[J]. 浙江大学学报(工学版), 2003, 37(6): 689-692
作者姓名:郑军  诸静
作者单位:浙江大学电气工程学院,浙江大学电气工程学院 浙江杭州310027,浙江杭州310027
摘    要:为了解决图像匹配中计算速度慢和匹配精度不高的缺陷,提出了一种基于自适应遗传算法(AGA)的匹配方法,该算法与传统遗传算法的不同在于其交叉概率和变异概率随个体的适应度值而变化,避免了后者易陷入局部极值的缺陷,从而增强了算法的快速性和全局收敛性能.图像与模板的相关值是一多峰值函数,模板匹配实质上是多峰值寻优过程.将AGA应用到图像匹配,是以相关值为适应度函数,通过选择、交叉、变异等遗传操作,对遗传个体进行迭代寻优,找出图像中的最佳匹配点.实验结果表明,基于该算法的图像匹配具有运算量小、匹配精确等优点,且算法稳定.

关 键 词:自适应遗传算法 图像匹配 多峰值函数 全局收敛 最佳匹配点 图像处理
文章编号:1008-973X(2003)06-0689-04
修稿时间:2002-09-26

Image matching based on adaptive genetic algorithm
ZHENG Jun,ZHU Jing. Image matching based on adaptive genetic algorithm[J]. Journal of Zhejiang University(Engineering Science), 2003, 37(6): 689-692
Authors:ZHENG Jun  ZHU Jing
Abstract:To solve the problem of slow computation speed and low accuracy in image matching, a new approach to image matching using adaptive genetic algorithm(AGA)was proposed. The difference between AGA and standard genetic algorithm(SGA)was that the probabilities of crossover and mutation were varied depending on the fitness values,thus improving the performance in searching speed and global convergence.The correlation value of an image and its template was a multimodal function, so template matching can be seen as an AGA searching optimum point process composed of select, crossover and mutation operators which were varied depending on the correlation value. Experiment show that the approach is simple, reliable and stable in operation, and has high accuracy in matching.
Keywords:adaptive genetic algorithm  image matching  multimodal function  global convergence
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号